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Abstract

A kinetic Lattice-Boltzmann scheme for advection–diffusion is presented. The scheme is based on a matrix formu-

lation of the lattice Boltzmann method which permits to handle non-isotropic diffusion–advection problems. In addi-

tion, by adjusting the kinetic eigenvectors defining the collision matrix to the local value of the flow velocity, the

scheme is also shown to preserve isotropy under genuinely two-dimensional flow.
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1. Introduction

In the recent years the lattice Boltzmann (LB) method has met with increasing interest as an alternative to

the discretization of the Navier–Stokes equations for the numerical simulation of complex flows [1–5]. Many

complex flow applications involve the dynamical evolution of chemical species which advect and diffuse
without any appreciable effect on the dynamics of the fluid flow (passive scalars). Examples in point are

the spreading of contaminants in groundwater, tracer dispersion in rough fractures, flows with phase tran-

sitions and many others. Many schemes are currently available to couple the dynamics of passive scalars to

LBmethods for fluid flows, ranging from recent variants of the finite-difference Lax-Wendroff schemes [6], to

lattice kinetic schemes [7–10] and stochastic particle methods [11]. As a general rule, kinetic schemes are very
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appealing because they move information along pre-defined, constant characteristics rather than along a

space-time changing flow field. Furthermore, diffusion is not represented by second order spatial derivatives,

but rather in the form of adiabatic relaxation to a local equilibrium. As a result, the time-step scales only

linearly with mesh size, rather than quadratically. On the other hand, since the passive scalar is represented

through a set of (at least) 2d populations in d dimensions, kinetic schemes imply a certain overhead in terms
of memory occupation which must be weighed against the gains in timestep size.

In this note, we present a matrix extension of lattice kinetic schemes which can handle non isotropic

problems as well as cure spurious directional effects in isotropic ones without introducing any further mem-

ory overhead.
2. Kinetic finite-difference method

We shall be concerned with the following advection–diffusion equation:
otqþr � ðq~uÞ ¼ r � Drq; ð1Þ

where q is the concentration of the passive scalar, ~u is the flow velocity and D is the diffusion coefficient,

generally a function of coordinates D ¼ Dð~rÞ.
Explicit finite-difference schemes for the above equation are subject to conditional stability constraints

connected with value of the dimensionless diffusion and advection coefficients D� ¼ Ddt=d
2
x and u* = udt/

dx (also known as diffusive and convective Courant numbers), where dx and dt are the mesh spacing and

lattice time-step, respectively. For instance, in the case of the two-dimensional modified Lax-Wendroff

(MLW) scheme these constraints take the form [6,12]
D� þ 1
2
u�2 < 1

4
; 2D� > max

ðx;yÞ
f�u�2x þ ju�x j;�u�2y þ ju�y jg:
The former refers to amplitude errors, and controls stability and numerical diffusion. The latter associates

with phase errors and controls numerical dispersion.

Since D* is scaled with d2x=dt, it is clear that such stability conditions are very restrictive for the time step,

as they scale with the square of the lattice spacing. It is therefore of interest to seek for alternative numerical

schemes, free from such a restriction. Kinetic methods represent such an option. The main idea of kinetic

methods is to replace the parabolic equation by a hyperbolic super-set of equations, so that diffusion results
as an emergent property of relaxation to local equilibrium, and needs not be represented by any second

order spatial derivative (the cause of the quadratic time-step scaling).

The governing kinetic Boltzmann equation for fi takes the following relaxation form (in lattice units

dt = dx = 1):
fið~r þ~ci; t þ 1Þ ¼ fið~r; tÞ þ
X
j

Xijðf eq
j � fjÞ; ð2Þ
where fi represents the probability to find a particle with speed~ci at position~r and time t.

The discrete speeds~ci describe the finite-difference template of the kinetic scheme. In the following, we

shall deal with simple nearest-neighbor connections, that is:
~c1 ¼ ð1; 0Þ; ~c2 ¼ ð0; 1Þ; ~c3 ¼ ð�1; 0Þ; ~c4 ¼ ð0;�1Þ;
in units of the lattice spacings, that is~c1dx ¼ ðdx; 0Þ; ~c2dy ¼ ð0; dyÞ.
The concentration q and flux J values are related to fi in the following way:
q ¼
X
i

fi; Ja ¼
X
i

ciafi; a ¼ 1; 2 – spatial index: ð3Þ
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In Eq. (2) X is a relaxation matrix [13] which defines how quickly the local distribution function fi relaxes

towards the equilibrium value f eq
i .

Taylor expansion of Eq. (2) yields the system of two hyperbolic equations for q and ~J:
_qþraJa þ
1

2
€qi þra

_Ja þ
1

2
rarbPab ¼

X
ij

Xijðf eq
j � fjÞ; ð4Þ

_Ja þrbPab þ
1

2
€Ja þrb

_Pab þ
1

2
rbrcMabc ¼

X
ij

ciaXijðf eq
j � fjÞ; ð5Þ
where Pab �
P

iciacibfi; Mabc �
P

iciacibcicfi are higher order kinetic moments. In the above, dot stands for

time-derivative and repeated indices are summed upon.
Furthermore, we posit that density is conserved and current density on a tensorial inverse time scale Kab.

In other words, collisions realize the following relaxation dynamics dq=dt ¼ 0 and dJ a=
dt ¼ �KabðJb � J eq

b Þ. This implies the following algebraic constraints:
X
i

Xij ¼ 0;
X
i

ciaXij ¼
X
b

Kabcjb;
where Kab are free parameters to be fine-tuned to obtain the desired macroscopic equations.
Using these properties, we obtain:
_qþraJa þ 1
2
€qi þra

_Ja þ 1
2
rarbPab ¼ 0; ð6Þ

_Ja þrbPab þ 1
2
€Ja þrb

_Pab þ 1
2
rbrcMabc ¼ KabðJeq

b � JbÞ: ð7Þ
Since mass is conserved, and momentum is not, we make the following assumption:
qeq ¼ q; Ja 6¼ Jeq
a ¼ qua:
This choice delivers the following expression for f eq
i :
f eq
i ¼ wiq 1þ 1

c2s
u�acia

� �
;

where wi = [1/4, 1/4, 1/4, 1/4] and c2s ¼
P

iwic2ix ¼
P

iwic2iy ¼ 1=2 is the lattice sound speed.

Next, we assume that P and M are near their equilibrium values:
Pab � P
eq
ab ¼ qc2sdab; Mabc � M

eq
abc ¼ qc2s u

�
ddabcd:
Thus, in the continuum limit and within the near-equilibrium approximation, the discrete equation (2) goes

towards the non-isotropic advection–diffusion equation in conservative form
_qþr � ðq~uÞ ¼ raðDabrbqÞ ð8Þ

with the tensor diffusivity defined by the following expression:
D�
ab � 1

2
dac � u�au

�
c

� �
ðK�1Þcb � 1

2
dcb

� �
: ð9Þ
Note that, due to the conservative form of Eq. (8), this tensor diffusivity may exhibit an explicit spatial

dependence. The relation (9) fixes the relaxation matrix Kab in terms of the prescribed diffusion tensor

Dab. It is important to remark that the flow-dependent correction uauc in the above equation stems from

the diabatic term ottq which is implicitly contained in Eq. (7). This flow-dependent (non-isotropic) effect

can be reabsorbed into an isotropic diffusivity by appropriate tuning of the scattering matrix K. From
Eq. (9) it is clear that, unless one moves to higher-order connectivity lattices (see Appendix A), such a
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recovery can only be obtained within a matrix LB formulation. For the case of isotropic diffusion, Dab =

Ddab, the matrix K reads as follows:
K ¼ 2

ð1þ 4D�Þk
k� 8D�u�2x �8D�u�xu

�
y

�8D�u�xu
�
y k� 8D�u�2y

" #
; k � 1þ 4D� � 2u�2: ð10Þ
It is worth emphasizing that even for the case of isotropic diffusion, this matrix cannot be diagonal unless

the flow is locally one-dimensional, that is uxuy = 0. The collision matrix can then be built according to a

(generalized) spectral decomposition [8,14]
Xij ¼ wi

X2
k¼1

V ðkÞ
i

N k

X2
l¼1

KklV
ðlÞ
j þ wik3

V ð3Þ
i V ð3Þ

j

N 3

;

where V ð1Þ
i ¼ cix; V ð2Þ

i ¼ ciy ; V ð3Þ
i ¼ c2ix � c2iy are orthogonal eigenvectors and Nk ¼

P
iV

ðkÞ
i wiV

ðkÞ
i are normal-

ization factors. Note that the collision matrix projects zero on the first eigenvector V ð0Þ
i ¼ 1 because of mass

conservation.

The explicit form of the collision matrix is
X ¼ 1

2

K �K

�K K

� �
þ k3

4

P 3 P 3

P 3 P 3

� �
; ð11Þ
where K denotes the 2 · 2 block Kab and P 3 ¼
1 �1

�1 1

� �
is the projector associated with the third

eigenvector.

The eigenvalues of the matrix X are:
k0 ¼ 0; k1 ¼
2

1þ 4D� ; k2 ¼
2ð1� 2u�2Þ

1þ 4D� � 2u�2
; k3
corresponding to the following kinetic eigenvectors:
V ð0Þ
i ¼ 1; W ð1Þ

i ¼ ðcix cos h� ciy sin hÞ;

W ð2Þ
i ¼ ðcix sin hþ ciy cos hÞ; V ð3Þ

i ¼ c2ix � c2iy :
The eigenvectors W(1) and W(2) are obtained by rotating cix and ciy by the angle h defined by the local flow
velocity, ux ¼ u cos h; uy ¼ u sin h. When the flow is at rest (u = 0), this transformation degenerates and one

goes back to the standard eigenvectors V ðkÞ
i .

The numerical scheme is stable for all values of D* and u* such that the eigenvalues of Xij lie in the inter-

val 0 < kk < 2, that is
0 <
2ð1� 2u�2Þ

1þ 4D� � 2u�2
< 2; 0 < k3 < 2:
This implies u*2 < 1/2, namely Mach number Ma2 ¼ u�2=c2s < 1, regardless of the value of D* > 0. On the

other hand, due to the near-equilibrium approximation, it is clear that for very small values of D*, such that

k2 and k3 come near to the upper bound 2, the scheme exhibits long-lasting oscillations which may hamper

the numerical efficiency of the method. Contrary to the MLW method and single-time relaxation method, a

4-point template is sufficient to remove flow-dependent numerical diffusion. It is worth stressing that this is

only possible thanks to the off-diagonal elements of the matrix K, which serve precisely the purpose of
absorbing artificial directional effects due to the combined effect of lattice discreteness and multidimen-

sional flow (uxuy 6¼ 0).
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3. Numerical simulations

In the following, we present some test simulations to validate the kinetic scheme and compare it with a

finite-difference Modified Lax-Wendroff scheme.
3.1. Isotropic diffusion: (D = constant, ~u ¼ 0)

We consider the time evolution of a Gaussian density profile under the effect of a constant diffusion and

no flow, that is zero cell-Peclet number Pec = Udx/D.

The initial distribution is given by
Table

Compa

dt

2.5

1

0.5

0.25

0.1

0.01
qð~r; 0Þ ¼ q0

2pr2
0

exp � j~r �~r0j2

2r2
0

 !
: ð12Þ
The results of the simulation for the case r0 = 10, q0 = 103 on a 250 · 250 grid, are summarized in Table 1.

Table 1 reports the L2 and L1 deviations from the exact solution of both LB and MLW schemes at time

t = 100 (physical units). These deviations are defined as:
kdqk2 ¼
1

N

X
x;y

jqðx; yÞ � qexactðx; yÞj2
 !1=2
and
kdqk1 ¼ max
ðx;yÞ

fjqðx; yÞ � qexactðx; yÞjg;
where N is the number of grid points.

In order to stress the stability limit of the kinetic scheme, the lattice diffusivity can be chosen ten times

higher than the one of the modified Lax-Wendroff scheme, that is D�
LB ¼ 2:5 and is D�

MLW ¼ 0:25 (first row

of Table 1), so that a corresponding ten-fold larger time-step can be used in the kinetic scheme, at a given

value of the physical diffusion coefficient (D = 1). To be noted that D* = 2.5 is beyond the critical value for

the MLW method, as indicated by the empty entries in the MLW columns. The numerical results show sat-

isfactory agreement with the analytical solution, with a fast decay of the error with the time-step followed
by a saturation when the amplitude falls below �10�5. Timing data indicate that the kinetic LB scheme can

compute significantly faster than MLW.

It is also instructive to assess the non-isotropy error associated with the single-time relaxation scheme

(lattice BGK or LBGK for short), as opposed to present matrix formulation. These are shown in Table

2. This table shows that, according to the expression (9), the isotropy error of the 4-speed LBGK scheme
1

rison of the LB and MLW methods for the case of pure diffusion (D = 1, k3 = 1)

LB L2 MLW L2 LB L1 MLW L1

2.78 · 10�2 –1.56 · 10�2 –

3.26 · 10�3 –1.83 · 10�3 –

7.02 · 10�4 – 4.12 · 10�4 –

2.27 · 10�5 2.27 · 10�5 2.94 · 10�4 2.94 · 10�4

3.10 · 10�5 6.8 · 10�6 3.47 · 10�4 5.76 · 10�5

3.84 · 10�5 2.18 · 10�5 4.28 · 10�4 2.80 · 10�4



Table 2

Isotropy error for the MLW, LB and LBGK method, k3 = 1

~u D�
theor Pe D*-measured value

MLW LB LBGK-4 LBGK-9

(0.2, 0.2) 0.20 1.41 0.200 0.200 0.186 0.200

(0.2, 0.2) 2.00 0.141 – 2.00 1.82 2.000

(0.1, 0.1) 0.20 1.41 0.200 0.200 0.198 0.200

(0.2, 0.2) 2.00 0.141 – 2.00 1.97 2.000
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is of order Ma2. It is worth noting that by adding four populations moving along the next-to-nearest neigh-

bor (diagonal) connections, plus one population of rest particles, the LBGK scheme (see column LBGK-9,

which stands for LBGK with nine populations) does in fact recover isotropy. However, this recovery comes

at the expense of a factor 9/4 in the number of variables. In addition, since the diffusivity is fixed by the a

single relaxation parameter, x, it is clear that the 9-speed LBGK scheme cannot deal with genuinely aniso-

tropic problems.
3.2. Non-isotropic diffusion (Dxx 6¼ Dyy 6¼ Dxy, ~u ¼ 0)

A distinctive feature of the present matrix LB scheme is the capability to simulate non-isotropic diffusion

phenomena. Such phenomena play a major role in a variety of applications, involving ferrofluids, liquid

crystals and biological flows [15]. The non-isotropic capabilities of the present method are demonstrated

in Table 3, for two typical anisotropy ratios Dmax/Dmin = 2 and Dmax/Dmin = 10, which can be taken as rep-

resentative of nematic and smectic regimes, respectively [15,16]. The initial distribution was taken in the

same form as in the previous section, (12). The analytical solution is then
Table

Error

Dxx, D

1; 1
2
; 0

1; 1
10
; 0

7
8
; 5
8
;�

31
40
; 13
40
;

qð~r; tÞ ¼ q0

2p
ffiffiffiffiffiffiffiffiffiffiffi
krabk

p e2ðr
�1Þabrarb ; rab � r2

0dab þ 2tDab: ð13Þ
From this table, we see that the present method can handle fairly significant anisotropy ratios. In addi-

tion, as shown in the last two rows, it can also handle arbitrary rotations of the lattice (p/6 for the case in

point). This non-isotropic capability, combined with the fact that the diffusion tensor is allowed to change
3

of the LB method for the case of non-isotropic diffusion (dt = 0.25, k3 = 1, t = 100, r0 = 10, grid 250 · 250)

yy, Dxy LB L2 LB L1

4.00 · 10�5 5.40 · 10�4

4.12 · 10�5 5.45 · 10�4

ffiffi
3

p

8
3.97 · 10�5 5.35 · 10�4

9
ffiffi
3

p

40 4.20 · 10
�5

6.13 · 10
�4



Table 4

Taylor–Aris dispersion, the width of the channel is 48

Pec D* U�
c DL/D � 1 Pe2/470 Error (%)

0.1 0.25 0.025 0.0486 0.0490 0.8

0.5 0.125 0.0625 1.221 1.226 0.3

1.0 0.25 0.25 4.89 4.90 0.2

5 0.05 0.25 121.5 22.6 0.9

10 0.05 0.5 487.5 490.2 0.6

Fig. 1. Plots of the density distribution at t = 0 and t = 1100 (arrow tail and head, respectively) for the present LB (left) and MLW

(right).
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in space and time, makes the present kinetic scheme a good candidate for the numerical simulation of dif-

fusion and heat transport phenomena in anisotropic media, with and without accompanying fluid flow and

external fields [17].

3.3. Diffusion–advection

Next we test the kinetic LB scheme for the case of diffusion and advection in a prescribed flow

configuration.
We have simulated the standard Taylor–Aris dispersion problem at various global Peclet numbers,

Pe = UcL/D, Uc being the centerline speed of the parabolic flow profile, and checked against the analytical

expression for the longitudinal dispersion coefficient
DL ¼ D 1þ Pe2

470

� �
:

The initial conditions are Gaussian, with width rx = 5 and ry = 50. The time-span of the simulations ran-

ged from 2000 to 10,000 time-steps depending on the Peclet number. The results, for channels of width 48

lattice units and lengths ranging from 500 to 2000, are reported in Table 4.

Again, satisfactory agreement with analytical results is observed up to Pec � 10, which is fairly adequate

for many practical applications. In order to test isotropy issues, we consider the case of a genuinely 2D flow,
u�x ¼ 0:2 and u�y ¼ 0:1, in a free (periodic) domain of size 350 · 250. The other parameters of the simulation

are, r0 = 5, D�
LB ¼ D�

MLW ¼ 0:02, corresponding to a cell-Peclet Pec = 11.2.

In Fig. 1 plots of the density are shown at time t = 0 and t = 1100 for both LB and MLW methods. As

expected, numerical data (see white arrows) follow the exact expression h~rðtÞi ¼~r0 þ~ut, where brackets

stand for integration over the density distribution over the flow domain.

From Fig. 1 it is apparent that, while the MLW results show visible deviations from isotropy, the present

matrix LB method proves nearly free of spurious directional effects.

Quantitative analysis of contour lines in the form r = r(h) at q = (1/e)qmax, delivers a non-isotropy factor
qmax/qmin = 1.74 for MLW and qmax/qmin = 1.02 for LB (clearly, for the isotropic case qmax/qmin = 1).
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4. Conclusions

A matrix kinetic scheme for advection–diffusion problems has been proposed. Besides being able to

deal with genuinely anisotropic problems, such matrix formulation permits to tame artificial directional

effects due to lattice discreteness in the presence of two dimensional flow. The method is also compared
with a modified Lax-Wendroff scheme, and found capable of marching in much larger time-steps, due

to the absence of diffusive Courant stability constraints. On the other hand, the kinetic LB method is

restricted to low-gradient conditions, i.e., the fluid flow and density profiles should not vary apprecia-

bly on the scale of a single lattice spacing. In addition, the LB method requires four moving species for

a single physical species, with a corresponding increase of memory occupation. For fully coupled fluid-

advection–diffusion problems, in which the fluid flow needs also to be computed, such memory limita-

tion is much less severe than it appears. A two dimensional LB–MLW calculations requires 9 + 1 = 10

arrays, against the 9 + 4 = 13 arrays required by a LB–LB approach, which means just a 30% increase.
Similar figures apply in 3D, with 15 + 1 = 16 versus 15 + 6 = 21 for the LB–MLW and LB–LB, respec-

tively. In addition, a further factor 2 savings comes from the fact that kinetic schemes only require one

time level of storage, since the state of the system at the previous time step can be overwritten �on the

fly�, i.e., while advancing the solution in time at each lattice site. It is therefore expected that the minor

memory overhead of the LB–LB approach is more than compensated by the significant gains in the

size of the time-step. On the other hand, as compared to existing single-time relaxation schemes, the

present matrix formulation permits to address genuinely non isotropic problems. It can also cure spu-

rious directional effects which affect nearest-neighbor LBGK schemes even for physically isotropic
problems.

Summarizing, we have presented a matrix kinetic scheme for diffusion–advection problem with the fol-

lowing features:

(i) It can march in larger time steps than scalar (non-kinetic) explicit methods, such as modified LW and

Moment Propagation methods, because the time step is free of diffusive CFL constraints.

(ii) It can handle non-isotropic problems, which are by definition out of reach for single-time relaxation

kinetic schemes. Moreover, it can also cure spurious anisotropic effects which affect nearest-neighbor
single-time relaxation kinetic methods even for the case of isotropic problems.

(iii) It achieves (i) and (ii) without introducing any memory overhead as compared with existing kinetic

schemes.
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Appendix A. Isotropy of LBGK scheme with nine speeds

Let us consider a LBGK scheme with the following nine discrete speeds:
~c0 ¼ ð0; 0Þ;
~c1 ¼ ð1; 0Þ; ~c2 ¼ ð0; 1Þ; ~c3 ¼ ð�1; 0Þ; ~c4 ¼ ð0;�1Þ;
c5 ¼ ð1; 1Þ; c6 ¼ ð1;�1Þ; c7 ¼ ð�1;�1Þ; c8 ¼ ð�1; 1Þ:
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The equilibrium distribution is defined as follows:
f eq
i ¼ wiq 1þ u�acia

c2s
þ
Qiabu

�
au

�
b

2c4s

� �
;

where Qiab ” ciacib � csdab and c2s ¼
P

iwic2ix ¼
P

iwic2iy is the lattice sound speed, wi being a set of weights

normalized to 1.

Taylor expansion of the Eq. (2) yields the system of two hyperbolic equations for q and ~J:
_qþraJa þ 1
2
€qi þra

_Ja þ 1
2
rarbPab ¼ xðqeq � qÞ; ðA:1Þ

_Ja þrbPab þ 1
2
€Ja þrb

_Pab þ 1
2
rbrcMabc ¼ xðJeq

a � JaÞ; ðA:2Þ
where all symbols have the same meaning as in the main text. Next, we assume that P and M are near their

equilibrium values:
Pab � Peq
ab ¼ q

X
i

wiciacib 1þ
Qicdu

�
cu

�
d

2c4s

� �
¼ q c2sdab þ

u�2

2c2s

1

3
� c2s

� �
þ 1

3

u�au
�
b

c2s

� �
;

Mabc � Meq
abc ¼ qc2s u

�
ddabcd:
The previous expressions were obtained with the only assumption that w+ = 4w·, where subscripts + and ·
denote nearest-neighbor and next-to-nearest neighbor connections, respectively. We note that for c2s ¼ 1=3
one recovers the usual isotropic expression of the equilibrium pressure tensor, Peq

ab ¼ qðc2sdab þ u�au
�
bÞ. The

value c2s ¼ 1=3 can be achieved by choosing w0 = 4w+, which yields the standard set of weights for 9 speed

LBGK schemes [18]:
w0 ¼ 4
9
; wþ ¼ 1

9
; w� ¼ 1

36
:

By assuming that _J
eq

a � �u�au
�
brbq and €q � u�au

�
brarbq, Eqs. (A.1) and (A.2) transform into:
_qþrau�aqþraJ
neq
a � 1

2
u�au

�
brarbqþ 1

2
ðc2sdab þ u�au

�
bÞrarbq ¼ 0;

� u�au
�
brbqþrbqðc2sdab þ u�au

�
bÞ ¼ �xJneq

a :
It is thus seen that the additional diffusion disappears from these equations, and we are left with:
_qþrau�aqþraJ
neq
a þ 1

2
c2sDq ¼ 0; ðA:3Þ

c2sraq ¼ �xJneq
a ; ðA:4Þ
which deliver the desired advection–diffusion equation, with diffusivity
D� ¼ c2s
1

x
� 1

2

� �
:
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